
N9 3- 1 ! 94 4

\

SYSTEM DIAGNOSTIC BUILDER

Joseph L. Nieten
GHG Corporation

1300 Hercules, Suite 111, Houston, TX

Roger Burke
NASA,JSC

DK42, Houston, TX 77058

77058

ABSTRACT

The System Diagnostic Builder (SDB) is an automated software verification and validation tool
using state-of-tlae-art Artificial Intelligence (AI) technologies. Originally developed by GHG
Corporation of Houston, Texas, the SDB is used extensively by project BURKE at NASA-JSC as
one component of a software re-engineering toolkit. The SDBis applicable to any government
or commercial organization which performs verification and validation tasks.

The SDB has an X-window interface, which allows the user to 'train" a set of rules for use in a rule-
based evaluator. The interface has a window that allows the user to plot up to five data
parameters (attributes) at a time. Using these plots and a mouse, the user can identify and
classify a particular behavior of the subject software. Once the user has identified the general
behavior pattern of the software, he can train a set of rules to represent his knowledge of that
behavior.

The training process builds rules and fuzzy sets to use in the evaluator. These rules are built
usinK a special implementation of the ID3 algorithm. The fuzzy sets classify those data points
not clearly identified as a particular classification. Once an im'tial set of rules is trained, each
additional data set given to the SDB will be used by a machine learning mechanism to refine the
rules and fuzzy sets. This is a passive process and, therefore, it does not require any additional
operator time.

The evaluation component of the SDB can be used to validate a single software system using
some number of different data sets, such as a simulator. Moreover, it can be used to validate

software systems which have been re-engineered from one language and design methodology
to a totally new implementation.

163

Theory of Operation

The System Diagnostic Builder (SDB) uses an
inductive machine learning technique to
generate decision trees from data sets classified
by a Subject Matter Expert (SME).

The primary objective of the SDB is to capture
system knowledge from an SME. This process
is known as knowledge acquisition. The
knowledge must be represented in a manner to
maximiie usability. Representing the
knowledge with a rule-base enables it to be
used by a standard expert system shell or any
other rule-based system. These rules could be
used by a forward chaining system to detect
faults and/or by a backward chaining system
to identify the causes of these faults.

The SDB knowledge acquisition process is based
on machine learning techniques combined with
an X-window graphical interface. This interface
allows an SMEto train a rule-base from some

number of data sets. The SME merely selects
those p.arameters deemed to be pertinent to the
identification of a particular system state. These
parameters are then plotted on the screen, and
with a click of the mouse button, the SME

assigns some number of those data instances to
a system state. This process is repeated until
the entire data set is classified.

Rule Base

The System Diagnostic Builder (SDB) is a Knowledge Acquisition tool

Figure 1

Those parameters used by the SME to classify
system behavior must be available from some
data stream within the system. However, the
SME may. re.q uire........additiofiai parameters durin g
the classification process !o insure accurate
identification of the system s behaviors. These

164

additional parameters will depend in some
way on those basic parameters available from
the system's data stream. The knowledge about
these new parameters represents a whole new
area within this knowledge acquisition scheme.

Additional knowledge about derived
parameters is supplied to the SDB through the
use of a standard ASCII text file which defines

the relationships between actual system
parameters and those parameters derived from
the actual parameters. Future plans for the
SDB includk the incorporation of-a prolog type
dialog system to extract this Meta knowledge
from the SME.

A temperature parameter is one example of a
basic parameter used for training. Alone this

arameter may not indicate very much,
owever, when used to calculate another key

parameter, it becomes very useful. The
knowledge about these calculations can either
be generic to the. type of science used by the
system or exphcitly added by the SME.

Once a data set is classified to the best of the
M , . . .S E s knowledge, it is submitted to an

induction routine for generation of the rule-
base. GHG has developed a special induction
algorithm to generate the required rule-base.
This new algorithm, called Turbo Induction, is
a special implementation of the ID3 algorithm.
In general, Turbo Induction enhances the
discrete logic capabilities 0f_D3with functions
that map the con- tinuous valuesof the system's
parameters into discrete events. Specific
capabilities of Turbo Induction are described
later in this paperl

The SDB has an incremental learning capability.
Multiple SME's can train the same data set, or
a single SME can train multiple data sets without

ertormin ne ative trainin This isP . g g . g"
accomphshed by managing the rule-bases from
the X interface and by eliminating that SME
knowledge which causes a conflict witti existing
knowledge. At this point, thisprocess is d0ne
without consulting the SME. Future versions
will provide a dialog Capability to inform the
SME ofexistin conflicts in the trainin domaing .. .g
for that system and request clarification from a
'super' SME.

Turbo Induction

Induction is a process where rules are
automatically generated from a set of examples.
ID3 is an induction algorithm developed by
J.R. Quinlan. This algorithm analyzes data sets
and recursively creates a decision tree. Each
pass through the algorithm, a single attribute
to be analyzed is chosen and a breakpoint value
is calculated. This breakpoint is the largest
inflectionpoint. Anode is added to the decision
tree identifying the values on both sides of the
breakpoint.

This approach depends heavily on the choice
of attribute at each pass. A bad choice of
attributes yields a set of rules that are
unnecessarily complex. This approach also
assumes that optimal decisions are made from
existing data. There are no provisions for data
provid6d by an SME during the operation.

While the ID3 algorithm works very well for
discrete parameters and data, current
implementations do not extend that success
into the domain of continuous functions.

Extremely large and noisy data sets produce a

computationaI nightmare. For this reason, GHG
Corporation has developed it s own
implementation of the ID3 algorithm, with
specific emphasis on training rules from very
lar g e and noisydata sets.. This im p lementatioh
is called Turbo Induchon.

Several methods have been researched to
eliminate the effects of noise on the induction

rOCeSS. One method took random samples
om the data set and performed induction on

only those data points. This method became
less effective as the size of the data set grew.
Analysis revealed that the density of those
values which indicated particular paths through
the decision tree became saturated,, and actuall y
diluted the other paths having less data points
to support them. This is unacceptable when
training a validation system.

Turbo Induction analyzes data sets using apre-
processor methodology. It performs localized
reduction and then maps those results into a
final iteration that yields a set of discrete events.
Thus, mapping the values from continuous
functions into some number of discrete states

(membership in a set). These sets are
constructed and populated based on al.._!l

knowledge about the system.

Turbo Induction has aprocedure to add those
arameters deemed important to the

construction of a reliable rule-set. Asuperset of
additional parameters must first be created.
These parameters are analyzed during the pre-
processor phase to determine their contribution
to the final decision tree.

Applications

Currently, Project BURKE at NASA-JSC is using
the SDB to Verify and Validate (V&V) the Shuttle
Mission Simulator (SMS).

The SDB is used to train rule-bases for each
single system within the SMS. Each of these
systems has it's own data parameters to indicate
it's behavior. An SME from each system trains
a set of rules using data collected from the SMS.
The SME also trains a set of rules using data
collected from an actual flight or from another
simulation which has already been certified
(some kind of baseline).

Each of these rules is tested to determine it's

accuracy level. In the event the generated rules
are not accurate enough, the SME has the ability
to refine the training and regenerate the rules.
Once a valid set of rules exists for both the SMS
and the baseline system, the sets of rules are
combined to form a rule-base for the subject
system.

©
Simulation

Data

%
$im.tation

Rules

Iqight
Data

Hight
Rules

Figure 2

165

The verification and validation process is done
passively. An operator can start a background
i_rocess to observe the SMS data stream and
classify the behavior of each data instance in
real-time. This mode does not require an
operator to monitor progress, only to respond
to the warnings. The operator can also use data
files to compare behaviors off-line. This
approach can take more man power.

In short, an expert system shell is using the
generated rule-base to identify the current state
of the subject system. As each data instance is
presented to the expert system, two rules should
fire: One rule from the SMS rule set and one
rule from the baseline rule set. The conclusion
of both of these rules should agree. If they do
not agree, then the expert system has identified
an inconsistency.

Inconsistencies can be attributed to several
reasons. The rule-sets may not agree due to an
actual problem occurring in the baseline; which
was then represented in the baseline rules set.
In this case, the inconsistency is attributed to an
anomaly that was not incorporated into the
simulation. However, an inconsistency can
also be an indication that the simulation has

not modeled the real world properly. This
situation is of particular interest tor this
application.

The SDB can be used in a number of Knowledge-
Based applications. Each of these is discussed
below.

As demonstrated in the SMS application, the
SDB can be used to compare a software system s
behavior to the behavior of some baseline

system. The only requirement to perform this
kind of analysis is data; data from both the
software system to be analyzed and the baseline
system.

Using the SDB to V&V re-engineered code is
conceptually the same as the V&V process of a
simulator. The only difference is the source of
the baseline used for comparison. A subject for
the baseline is alread ye.available', the original
program source code. This makes the use of the
SDI_a perfect fit. The only difficultymay be in
the visibility of variables within the original
software.

Other applications can make use of the rule-

166

bases generated by the SDB. The rule-base

generated by the SDB represents actual
'behavioral knowledge about the Subject
system. This knowledge is portable to any
other rule-based system. In particular, these
rules can be used in fault detection systems,
fault isolation systems, and Intelligent
Computer Aided Training (ICAT) systems.

One of the biggest draw backs for conventional
expert systems is the time required to extract
the knowledge from the expert. The SDB
provides a vehicle for system knowledge to be
captured one time and reused by any rule-
based application.

Conclusion

The SDB provides a unique tool to perform
knowled, ge acquisition for those systems, with
accessible data. The SDB also provides an
excellent platform to perform verification and
validation of conventional systems, using state-
of-the-art technolog_

REFERENCE

Holland, J.H., "Escaping brittleness: the
possibilities, of .general-pur ose learnin
algorithms apphed to parai_;1 rule-base_
systems", in Machine Learning: An AI Approach,
Michalski, R.S., Carbonell, J.G. and Mitchell,
T.M. (EDs), Morgan Kaufman.

Michalski/R.S., ;;A Theory and Methodology
of Inductive Learning,' in Machine Learn ing: An
AI Approach, Michalski, R.S., Carbonell, J.G.
and Mitchell, T.M. (EDs), Morgan Kaufman.

Quinlan, JIR.,, "The Effect of Noise on Concept

Learning," in Machine Learn ing: A n AI Approach,
Michalski, R.S., Carbonell, J.G. and Mitchell,
T.M. (EDs), Morgan Kaufman.

Quinlan, J.R., "Induction of decision trees",
Machine Learning I, 1.

Quinlan, J.R., "A case Study of inductive
knowledge acquisition , in Applications ofExpert
Systems, Quinl_an J.R., Addison-Wesley.

Quinlan, J.R., "Generatingproduction rules
from decision trees", Proceedings 10th
International Joint Conference Artificial
Intelligence,Milan.

O'Keefe,R.,"Simulationand ExpertSystems-
A Taxonomy and Some Examples", in
Simulation, Society for Computer Simulation
San Diego.

167

